Extensions 1→N→G→Q→1 with N=C24 and Q=C3xS3

Direct product G=NxQ with N=C24 and Q=C3xS3
dρLabelID
S3xC23xC696S3xC2^3xC6288,1043

Semidirect products G=N:Q with N=C24 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C24:1(C3xS3) = A4xS4φ: C3xS3/C1C3xS3 ⊆ Aut C24169+C2^4:1(C3xS3)288,1024
C24:2(C3xS3) = A4wrC2φ: C3xS3/C1C3xS3 ⊆ Aut C2486+C2^4:2(C3xS3)288,1025
C24:3(C3xS3) = C3xA4:D4φ: C3xS3/C3S3 ⊆ Aut C24366C2^4:3(C3xS3)288,906
C24:4(C3xS3) = C2xC6xS4φ: C3xS3/C3S3 ⊆ Aut C2436C2^4:4(C3xS3)288,1033
C24:5(C3xS3) = C3xC22:S4φ: C3xS3/C3S3 ⊆ Aut C24246C2^4:5(C3xS3)288,1035
C24:6(C3xS3) = (C22xS3):A4φ: C3xS3/C3C6 ⊆ Aut C24246C2^4:6(C3xS3)288,411
C24:7(C3xS3) = A4xC3:D4φ: C3xS3/C3C6 ⊆ Aut C24366C2^4:7(C3xS3)288,928
C24:8(C3xS3) = C22xS3xA4φ: C3xS3/S3C3 ⊆ Aut C2436C2^4:8(C3xS3)288,1037
C24:9(C3xS3) = S3xC22:A4φ: C3xS3/S3C3 ⊆ Aut C2436C2^4:9(C3xS3)288,1038
C24:10(C3xS3) = C3xC24:4S3φ: C3xS3/C32C2 ⊆ Aut C2424C2^4:10(C3xS3)288,724
C24:11(C3xS3) = C2xC6xC3:D4φ: C3xS3/C32C2 ⊆ Aut C2448C2^4:11(C3xS3)288,1002

Non-split extensions G=N.Q with N=C24 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C24.(C3xS3) = C6xA4:C4φ: C3xS3/C3S3 ⊆ Aut C2472C2^4.(C3xS3)288,905
C24.2(C3xS3) = C2xDic3xA4φ: C3xS3/S3C3 ⊆ Aut C2472C2^4.2(C3xS3)288,927
C24.3(C3xS3) = C6xC6.D4φ: C3xS3/C32C2 ⊆ Aut C2448C2^4.3(C3xS3)288,723
C24.4(C3xS3) = Dic3xC22xC6central extension (φ=1)96C2^4.4(C3xS3)288,1001

׿
x
:
Z
F
o
wr
Q
<